Finite Blocklength and Dispersion Bounds for the Arbitrarily-Varying Channel
نویسندگان
چکیده
Finite blocklength and second-order (dispersion) results are presented for the arbitrarily-varying channel (AVC), a classical model wherein an adversary can transmit arbitrary signals into the channel. A novel finite blocklength achievability bound is presented, roughly analogous to the random coding union bound for non-adversarial channels. This finite blocklength bound, along with a known converse bound, are used to derive bounds on the dispersion of discrete memoryless AVCs without shared randomness, and with cost constraints on the input and the state. These bounds are tight for many channels of interest, including the binary symmetric AVC. However, the bounds are not tight if the deterministic and random code capacities differ.
منابع مشابه
Finite Blocklength Rates over a Fading Channel with CSIT and CSIR
In this work, we obtain lower and upper bounds on the maximal transmission rate at a given codeword length n, average probability of error and power constraint P̄ , over a block fading additive white Gaussian noise (AWGN) channel with channel state information (CSI) at the transmitter and the receiver. These bounds characterize deviation of the finite blocklength coding rates from the channel ca...
متن کاملFixed Error Asymptotics For Erasure and List Decoding
We derive the optimum second-order coding rates, known as second-order capacities, for erasure and list decoding. For erasure decoding for discrete memoryless channels, we show that second-order capacity is √ V Φ−1( t) where V is the channel dispersion and t is the total error probability, i.e., the sum of the erasure and undetected errors. We show numerically that the expected rate at finite b...
متن کاملA Minimax Converse for Quantum Channel Coding
We prove a one-shot “minimax” converse bound for quantum channel coding assisted by positive partial transpose channels between sender and receiver. The bound is similar in spirit to the converse by Polyanskiy, Poor, and Verdú [IEEE Trans. Info. Theory 56, 2307–2359 (2010)] for classical channel coding, and also enjoys the saddle point property enabling the order of optimizations to be intercha...
متن کاملCommon-Message Broadcast Channels with Feedback in the Nonasymptotic Regime: Full Feedback
We investigate the maximum coding rate achievable on a two-user broadcast channel for the case where a common message is transmitted with feedback using either fixed-blocklength codes or variable-length codes. For the fixed-blocklength-code setup, we establish nonasymptotic converse and achievability bounds. An asymptotic analysis of these bounds reveals that feedback improves the second-order ...
متن کاملA Finite-Blocklength Perspective on Gaussian Multi-Access Channels
Motivated by the growing application of wireless multi-access networks with stringent delay constraints, we investigate the Gaussian multiple access channel (MAC) in the finite blocklength regime. Building upon information spectrum concepts, we develop several non-asymptotic inner bounds on channel coding rates over the Gaussian MAC with a given finite blocklength, positive average error probab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.03594 شماره
صفحات -
تاریخ انتشار 2018